Prof. Seshu Lavania Department of Botany Lucknow University, Lucknow

ROOT APICAL MERISTEM IN SOME APOCYNACEAE

SUDHA JAIN AND A. PILLAI

Department of Botany, M.S.J. College, Bharatpur-321001 (India) (Accepted January, 1994)

A closed type of organisation was seen in the radicular and well-established root apices in all the species studied. No quiescent centre was observed.

Key Words : Korper - Kappe, closed-configuration.

The root apical organisation was described in some primitive families like Ranunculaceae and also in some advanced families like Gentianaceae, Scrophulariaceae and Compositae (Pillai *et al.*, 1965, a, b). Satija (1982) studied root-apical organisation in some members of Asclepidiaceae. The investigations presented here deal with the study of root apical organisation in some genera of family Apocynaceae.

MATERIALS AND METHODS

Root apices of the following genera beionging to family Apocynaceae were investigated : Carissa carandas Linn., Nerium odorum Linn., Tabernaemontana divaricata Linn. R. Br., Thevetia neriifolia Jun exstend and Wrightia tinctoria R. Br. Seeds of Carissa, Nerium and Wrightia were soaked in water and the radicular apices were collected by dissecting the embryos. Root apices from well-established plants except in Taberanaemontana were obtained from plants raised by germinating seeds in paper towels and polythene bags containing soil. Mature roots of Tabernaemontana were collected from wellestablished plants developled by cuttings.

Materials collected were fixed in FAA, washed thoroughly in 70% alcohol, dehydrated through TBA series and embedded in paraffin. Serial longitudinal sections were cut on a rotary-microtome at 4-6 μ m and stained with safranin and light green in combination with tannic acid and ferric chloride (Johansen, 1940).

OBSERVATIONS

The radicular as well as root apices from wellestablished plants of all the species studied, showed a closed type of organisation with three superposed tiers of initials at the root-pole, one each aligned with the central-cylinder, cortex and columella and separateinitials for the epidermis-peripheral part of the rootcap (Figs. 1-3).

Rootcap: It covers the root body for a considerable distance behind the meristematic region and on the basis of cell orientation, can be distinguished into central columella and the peripheral region. The columella initials are 5-6 cells wide in radicular and older root apices of Carissa and Wrightia and 3-4 cells wide in Nerium (Fig. 1, 3). The regular vertical columella files are formed by division of columella initials. The columella cylinder is broadest in Thevetia, next in breadth is Wrightia and Carissa and the narrowest being in Nerium and Tabernaemontana and the radicular apex is broader than the growing root (Table 1). The peripheral part of the cap is distinguished from the central columella by the files of cells which curve from the flanks towards the columella. The origin of these files can be traced proximally to the epidermisrootcap initials-showing repeated Kappe divisions to form the peripheral part of the rooteap (Fig. 4).

Cortical initials: Just distal to the initials of the Central cylinder in the root-body, are the cortical initials. These are 3-4 cells wide in *Carissa*, *Tabernaemontana* and *Wrightia* and 4-5 cells wide in *Nerium* and *Thevetia* in radicular as well as in rootapices of well-established plants as seen in mediian longitudinal sections (Figs. 1-3). The peripheral cells of this tier show Korper divisions and differentiate into the cortex proximally (Fig. 4).

Central Cylinder initials : A group of 3-4 cells at the root pole immediately proximal to the cortical initials represents these initials. The initials are almost isodiametric, densely cytoplasmic and show promi-

Figures 1-4 Median longitudinal sections of the root apex. Fig. 1. Carissa carandas - radicular apex (x 400). Fig. 2. Nerium odorum - older root apex (x 400). Fig. 3. Thevetia meriifolia - older root apex (x 400). Fig. 4. Nerium odorum - part of the section enlarged to show the epidermal rootcap-complex (x 800).

nent nuclei. Korper divisions take place in these initials to form the central cylinder (Fig. 4).

Coneted to Present United

There is no ontogenetic change in the organisation of the apical meristem in radicular and mature roots.

Nuclear area/Cytoplasmic area ratio in the radicular as well as in root apex of well-estabilished plants was calculated. In the radicular and older apices of *Carissa*, the value for nuclear/cytoplasmic ratio is equal in central cylinder intials and cortical initials whereas the ratio is highest in the columella initials of the radicular apex. The value is the highest for the central cylinder initials in radicular and older root apices of *Nerium*, *Thevetia* and *Wrightia* and for the columella initials in the older root apices of *Tabernaemontana* (Fig. 5). The immediate derivatives of these initials show lower values.

Quiescent centre characterised by lightly stained

cells was not observed at any developmental stage in any species.

DISCUSSION

The type of structure reported in this study is referred to as "the most precise organisation of the meristem in the dicotyledons" by Esau (1953, 1965). The closed type of organisation has also been reported in the members of family Asclepidiaceae (Satija, 1982) and in *Solanum melongena* (Jethwani and Pillai, 1989). Among the various theories put forward, the Korper-Kappe concept of Schiiepp (1926) seems to be the most suitable for root apical meristems. In additiokn to the Korper and Kappe patterns of growth, the rib meristem pattern has been described by many investigators in the columella of the rootcap. The columella initials have been termed as "columellogen" by Pillai and Pillai (1961 a). Structurally and ontogenetically the colu-

Table 1: Root measurements

Species	Age of the root	Diameter of the root	Width of the periphe- ral zone (µm)	Width of the Columella (µm)
Carissa	Radicular apex	304	122	60
	Older root apex	202	69	64
Nerium	Radicular apex	306	109	68
	Older root apex	265	103	59
Tabernae- montana	Older root apex	274	86	98
Thevatia	Older root apex	439	111	207
Wrightia	Radicular apex	352	88	176
	Older root	169	52	61

Figure 5 Histogram depicting nuclear/cytoplasmic ratios in the various zones of the radicular and older root apices.

- CCI Central cylinder initials
- COI Columella initials
- CTI Cortical initials
- ERC epidermis rootcap-complex
- KA Kappe division
- KO Korper division
- PR Peripheral part of the rootcap.

mella differs from the peripheral region of the rootcap. This suggestion is in agreement with earlier studies (Pillai, 1964). Armstrong and Heimsch (1976) relate the pattern of meristem to root length and Bansal (1983) suggested a correlation between the age of the root and apical organisation in *Emblica*. The data presented here do not support either of the above, as the structure of the root meristem remains unchanged in young and old roots as well as in short and long roots.

No quiescent centre has been observed at any developmental stage in the roots of all genera.

Comparison of the nuclear/cytoplasmic ratios in the different regions of the radicular and older root apices indicates that the initials have more meristematic activity as compared to their immediate derivatives. This is as expected in roots with no quiescent centre.

Root apex with discrete initials is supported to be advanced hence Apocynaceae is considered as an advanced family and the root apical-organisation with tiered initials support this.

The Authors are thankful to Dr. S.K. Pillai for his valuable suggestions. The first author is grateful to University Grand Commission, New Delhi, for awarding Teacher Research Fellowship.

REFERENCES

Armstrong J E & C Heimsch 1976 Ontogenetic reorganisation of the root meristem in the Compositae. *Am J Bot* 63 212-219.

Bansal S 1983 Developmental and Histochemical studies on some trees. Ph D Thesis University of Rajasthan Jaipur.

Esauk 1953 *Plant Anatomy* 1st ed John Wiley and Sons New York.

Jethwani V & A Pillai 1989 Root Apical organisation in Solanum melongena Linna. J Phytol Res 2 177-180.

Johansen D A 1940 *Plant microtechnique* McGraw Hill Co New York.

Pillai A 1964 Root apical organisation in gymnosperms some conifers. *Bul Torrey Club* **91** 1-13.

Pillai S K & A Pillai 1961 A Root apical organisation in monocotyledons-Musaceae. J Ind bot Soc 40 444-445.